
16

International Journal of Recent Research and Review, Vol. VIII, Issue2, June 2015
ISSN 2277 – 8322

Problems with Cocomo-11 in Respect to Domestic IT
Companies

Rekha Verma1, Meenu Dave2

Department of Computer Science, Jagan Nath University, Jaipur, India
Email: 1rekhaverma51@gmail.com

Abstract- COCOMO II is a cost estimation model for

planning and estimating software projects. It is an
important aspect for managing software projects or
software development business. A cost model provides a
framework for communicating business decisions among
the stakeholders of a software effort. COCOMO II helps in
taking decision for price negotiations, improvement
process, purchase of tools, architecture changes, make/buy
tradeoffs, and several other return-on investment decisions
with a reliable basis of estimate. COCOMO II works
effectively for large and very large projects, but it seems

that there are lots of short comings in the model when
applied to small Indian domestic market. This paper

introduces some of the problems of COCOMO II in
relation of Indian domestic projects. A few solutions are
also suggested here.

Keywords- COCOMO-II, effort multipliers, scale factors.

I. INTRODUCTION

COCOMO (Constructive Cost Model) is a method that
allows software project managers to estimate project cost
and duration. It was developed initially (COCOMO 81)
by Barry Boehm in the early eighties. The COCOMO II
model is update of COCOMO 81 to address new
practices of software development during 1990's and
2000's. The model is by now invigorative software
engineering artifact that has, from customer perspective,
the following features [1, 2]:

 The model is simple and well tested
 Provides about 20% cost and 70% time estimate

accuracy

II. COCOMO II: FEATURES

COCOMO II incorporates various sub-models that
produce the following detailed software estimates [3,4]:

A. Estimation Equations
The amount of effort in person-months (PM) is
estimated by the formula:

The value of n is 16 for the Post-Architecture model
effort multipliers, Emi, and 6 for the Early Design
model; the number of SFi stands for exponential scale
factors.
The values of A, B, SF1 …, and SF5 for the early design
model are the same as those for the Post-Architecture
model. The values of EM1, …, and EM6 for the early
design model are obtained by combining the values of
their 16 Post-Architecture counterparts.
The value of A and B in the COCOMO II are:
 A = 2.94 B = 0.91

01.0
5

1

FSBE j
j

B. Scale Factors
 Precendentedness (Prec)

 Development Flexibility (Flex)

 Architecture/Risk Resolution (Resl)

 Team Cohesion (Team)

 Process Maturity (Pmat)

 n
PM = A x SizeE x ∏ EM

 i=1

17

C. Effort Multipliers

a) General Cost Drivers
 Required Software Reliability (RELY)

 Database Size (DATA)
 Product Complexity (CPLX)

 Development for Reusability (RUSE)

 Documentation (DOCU)

b) Platform Factors
 Execution Time Constraint (TIME)

 Main Storage Constraint (STOR)

 Platform Volatility (PVOL)

c) Personnel Factors
 Analyst Capability (ACAP)

 Programmer Capability (PCAP)

 Personnel Continuity (PCON)

 Applications Experience (APEX)
 Platform Experience (PLEX)

 Language and Tool Experience (LTEX)

d) Project Factors
 Use of Software Tools (TOOL)

 Multi site Development (SITE)

 Required Development Schedule (SCED)

III. DOMESTIC INDIAN MARKET: OBSTACLES

There are lots of problems which are being faced by the
Indian IT companies who are working in the domestic
market. Some of the important issues are:

A. Small Budget
Most of the domestic projects maintain a very low
budget, which is either in a few thousands or a few lacs.
Thus, maintaining good quality is not possible. Market
competition and several other expectations put immense
pressure on the software professionals and the provided
budget is generally insufficient.

B. Late Release of Payments

The scenario for payment in the Indian market is not
very encouraging for the small companies. As the
business clients do not always pay on time, the
companies work under constant pressure. A complete
cycle of late payments start as the clients pay late, and
thus the company also delays the payments to the
software professionals, industry related vendors, and so
on.

C. Additional Manpower (software professionals) not
available

Small companies cannot afford bench of employees.
Thus with a limited team of professionals, a company
cannot take varied size projects. In this way, a company
sometimes loses big project offers. Working with
multiple projects is also not possible in this scenario.

D. Work overload results in decreased work efficiency
and low quality end product

Every phase for a software development should be
critically carried out. In big companies, the professionals
are specifically assigned to phases like requirement
analysis, designing, coding, testing, and maintenance,
etc. Regularly working for increasing the quality output
for a particular phase increases the efficiency and
reduces the output time for that phase. On the other
hand, a small company has limited professionals, who
are always overburdened and the same person is
responsible to take care of different phases of software
development. Work overload and juggling between
varied responsibilities results in reduced quality of the
end product and decreased efficiency of the software
professional.

E. Frequent communication with the client is not
possible

Effective communication with the client lays foundation
for a good quality end product. Large enterprises have a
dedicated team which interacts with the clients regularly
and conveys feedback to the development team. Small
companies do not have such kind of setup. Mainly it is a
team of 2-3 professionals, who are themselves

18

interacting with the client, and taking care of the
complete SDLC also. Thus, because of work pressure,
there is minimal interaction with the client and feedback
based development or rectification is also not carried out
frequently.

F. No Good Methodology for Cost Estimation
Most of the methodologies of cost estimations are using
US standard of working. This methodology doesn’t get
fit in Indian market/domestic market. Using of these
techniques are very time consuming and complex in use.
For example, for using COCOMO-11, expert knowledge
of COCOMO-11 is required.

IV. SUGGESTIVE MEASURES IN REFERENCE TO
DOMESTIC INDIAN MARKET

Keeping in mind the aforesaid problems, COCOMO-II
has been simplified for domestic Indian market in the
following ways:
 By removing unnecessary scale factors and effort

multipliers.
 By designing and developing a java based tool with

modified parameters for COCOMO-II.

A. Removal of unnecessary scale factors and effort
multipliers
COCOMO-II is based on 5 scale factors and 16 effort
multipliers. By thorough study and observations, it is
found that some of them are not required for small
domestic projects. Following scale factors were removed
from COCOMO-II for specific use in the domestic
applications:

a) Development Flexibility (Flex)
The FLEX scale factor [5] is largely intrinsic to a project
and uncontrollable. For small domestic project FLEX
does not play important role so this can be avoided.

b) Architecture/Risk Resolution (RESL)
This factor [5] combines two of the scale factors in
COCOMO, Design Thoroughness by Product design
Review (PDR) and Risk Elimination by PDR. RISK

Resolution is not much important for domestic projects
so this can also be ousted.

c) Team Cohesion (TEAM)
The Team Cohesion scale factor [5] accounts for the
sources of project turbulence and entropy because of
difficulties in synchronizing the project’s stakeholders:
users, customers, developers, maintainers, etc. These
difficulties may arise from differences in stakeholder
objectives and cultures, difficulties in reconciling
objectives, stakeholders’ lack of experience and
familiarity in operating as a team. In domestic projects, a
very less number of stakeholders are available; so this is
not a important factor and can be ignored.

A few of effort multipliers mentioned below have also
been removed from the implementation.

a) Database Size (DATA)
This cost driver [6] attempts to capture the effect that
large test data requirements have on product
development. The rating is determined by calculating
D/P, the ratio of bytes in the testing database to SLOC in
the program. The reason the size of the database is
important to consider is because of the effort required to
generate the test data that will be used to exercise the
program. In other words, DATA is capturing the effort
needed to assemble and maintain the data required to
complete test of the program through IOC. As most of
the domestic projects are having quite less number of
tables and work with average size of databases, so this
effort multiplier can be avoided and there is no need to
consider it while working with domestic small projects.

b) Development for Reusability (RUSE)
This cost driver [5] accounts for the additional effort
needed to construct components intended for reuse on
current or future projects. This effort is consumed with
creating more generic design of software, more elaborate
documentation, and more extensive testing to ensure
components are ready for use in other applications.
“Across project” could apply to reuse across the modules
in a single financial application project. “Across

19

program” could apply to reuse across multiple financial
applications projects for a single organization. “Across
product line” could apply if the reuse is extended across
multiple organizations. “Across multiple product lines”
could apply to reuse across financial, sales and
marketing product lines. Most of the domestic projects
are small and cannot be sub-divided in reusable
components. So this effort multiplier need not be
considered for domestic projects.

c) Documentation (DOCU)
Several software cost models have a cost driver for the
level of required documentation [3], i.e., Documentation
Match to Life-Cycle Needs (DOCU). In COCOMO II,
the rating scale for the DOCU cost driver is evaluated in
terms of the suitability of the project’s documentation to
its life cycle needs. In general, domestic projects do not
use formal documentation; therefore, this multiplier can
be removed.

d) Platform Volatility (PVOL)
“Platform” is used here [3] to refer to the complexity of
hardware and software (OS, DBMS, etc.), the software
product calls on to perform its tasks. If the software to be
developed is an operating system, then the platform is
the computer hardware. If a database management
system is to be developed, then the platform is the
hardware and the operating system. If a network text
browser is to be developed, then the platform is the
network, computer hardware, the operating system, and
the distributed information repositories. The platform
includes any compilers or assemblers supporting the
development of the software system. This rating ranges
from low (where there is a major change every twelve
months), to very high (where there is a major change
every two weeks). Domestic projects are generally
developed for single platform only, hence refrain from
using this multiplier is suggested.

e) Personnel Continuity (PCON)
The rating scale for PCON [3] is in terms of the project’s
annual personnel turnover: from 3 percent, i.e. very high
continuity, to 48 percent, which is very low continuity.

Most of the domestic projects are of small time duration
so personnel continuity does not play much role over
here.

f) Multi site Development (SITE)
Given the increasing frequency of multisite
development, and indications that multisite development
effects are significant, the SITE cost driver [3] has been
added in COCOMO II. Determining its cost driver rating
involves assessing and judgment-based averaging of two
factors: site collocation from surface mail and some
phone access to full interactive multimedia. Domestic
projects are generally being developed on a single site,
so, multi-site development aspect may not be considered.

B. Design and Development of Java Based Tool
For fast estimation of cost, a Java based tool has been
designed by removing unnecessary scale factors and
effort multipliers form the original COCOMO-II model.

V. ANALYSIS OF THE MODIFIED TOOL FOR
COCOMO-II

After removing some of the effort multipliers and scale
factors, a few projects were evaluated against both the
original COCOMO-II and the modified tool. The results
achieved are shown in Table 1 shown below.

TABLE I
Effort Estimation in person-months (PM)

Projects Value Estimated
by COCOMO II

Value
Estimated by
Modified tool

Actual
Value

P1 5 4.6 4
P2 13 11.83 10
P3 7 5.76 5

P4 1.2 0.76 0.53

The tabular values when converted in graphical form, as
given in Figure 1, clearly show that most of the values
estimated by the modified tool are closer to the actual
values.

20

Fig.1 Effort estimation for domestic indian market projects

VI. CONCLUSION
COCOMO-II cannot be applied effectively on the
projects for the domestic Indian market, as many effort
multipliers and scale factors are not relevant for
small/medium projects. The paper is based on study of
lots of Indian projects meant for the domestic market.
The modified COCOMO-II tool based on the adaptations
carried out as a result of the study has proved that with
changes, COCOMO-II will prove to be more effective
for the domestic Indian market.

VII. REFERENCES

[1] Pressman, Roger S. (2005). Software Engineering, A
Practitioner’s approach, McGraw-Hill International
Edition (6th edition), pp. 674-703.

[2] Center for Software Engineering (2000). COCOMO II -
Model Definition Manual, University of Southern
California (USC), version 2.1. Available online at:
http://csse.usc.edu/csse/research/COCOMOII/cocomo200
0.0/CII_modelman2000.0.pdf

[3] Khatibi, V. and Jawawi, D.N.A. (2011). Software Cost
Estimation Methods: A Review, Journal of Emerging
Trends in Computing and Information Sciences, Volume
2 No. 1, pp. 21-29.

[4] Boehm, B., et al. (2005), COCOMO Suite Methodology
and Evolution, CrossTalk - The Journal of Defense
Software Enfineering, pp. 20-25. Available online at:

http://sunset.usc.edu/csse/TECHRPTS/2005/usccse2005-
509/usccse2005-509.pdf

[5] Merlo–Schett, N. (2003), COCOMO, Seminar on
Software Cost Estimation, Requirements Engineering
Research Group, Department of Computer Science,
University of Zurich, Switzerland, pp. 1-20.

[6] De Rore, L., et al. (2008),Deducing software process
improvement areas from a COCOMO II-based
productivity measurement, Proceedings of 5th Software
Measurement European Forum, Milan, May 28-30 2008,
pp. 163-174. Available online at:
http://www.dpo.it/smef2008/papers/proceedings_smef200
8.pdf

0

5

10

15

20

25

30

35

40

P1 P2 P3 P4

Actual Value

Value
Estimated by
Modified tool

Value
Estimated by
COCOMO II

